

СОДЕРЖАНИЕ

		стр.
1.	Назначение	3
2.	Технические характеристики	3
3.	Состав подогревателя	3
4.	Комплект поставки	4
5.	Устройство и принцип работы	4
5.1	Колонна подогревателя	4
5.2	Блок электрооборудования	5
6.	Указание мер безопасности	5
7.	Порядок работы	6
7.1.	Подготовка подогревателя к работе	6
7.2.	Настройка подогревателя и его работа	6
7.3.	Окончание работы	8
8.	Техническое обслуживание	8
8.1.	Общие требования	8
8.2.	Периодичность и порядок технического обслуживания	9
8.3.	Порядок замены ТЭНов	9
9.	Характерные неисправности и методы их устранения	10
10.	Свидетельство о приемке	11
11.	Свидетельство о консервации	11
12.	Свидетельство об упаковке	11
13.	Гарантийные обязательства	11

ПРИЛОЖЕНИЯ:

- 1. Сведения об углекислоте;
- 2. Подогреватель ПУ-500. Общий вид;
- 3. Колонна подогревателя;
- 4. Пульт управления;
- 5. Схема подключения подогревателя ПУ-500;
- 6. Схема электрическая принципиальная подогревателя ПУ-500;
- 7. Заводские уставки рабочих параметров приборов ТРМ 10;
- 8. Схема электрическая подогревателя ПУ-500 (монтажная схема);
- 9. Карта учета технического обслуживания и ремонта.
- 10.Опросный лист.

1. НАЗНАЧЕНИЕ.

Подогреватель ПУ-500 предназначен для непосредственного (без промежуточного теплоносителя) подогрева углекислого газа и подачи его к потребителю с поддержанием температуры газа на выходе из подогревателя.

Подогреватель предназначен для работы с двуокисью углерода по ГОСТ 8050-85 высшего и первого сорта.

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ.

№ п/п	ХАРАКТЕРИСТИКА	ЗНАЧЕНИЕ
2.1.	Рабочая среда	двуокись углерода по ГОСТ 8050-85
2.2.	Тип	электрический
2.3.	Максимальная пропускная способность, кг/час	до 500
2.4.	Питание:	
	- трехфазный переменный ток частотой, Гц	50
	- напряжение в сети питания, В	380
2.5.	Потребляемая мощность, кВт не более	9,0
2.6.	Количество ТЭНов, шт	
2.7.	Мощность одного ТЭНа, кВт	
2.8.	Рабочее давление, МПа (кгс/см ²)	
2.9.	Температура газа на входе, ⁰ С	
2.10.	Температура газа на выходе, ⁰ С	0+30
2.11.	Температура окружающей среды, ⁰ С	+5+40
2.12.	Относительная влажность, не более, %	80
2.13.	Масса, не более, кг.	70
2.14.	Габариты, мм	350x350x1300 (h)
2.15.	Назначенный срок службы до списания, лет,	
	не менее	15

3. СОСТАВ ПОДОГРЕВАТЕЛЯ.

Подогреватель ПУ-500 включает в свой состав:

- колонну подогрева газа,
- раму,
- блок электрооборудования с панелью управления,
- датчик температуры,

Подогреватель снабжается комплектом запасных частей, инструментов и принадлежностей (ЗИП).

4. КОМПЛЕКТ ПОСТАВКИ.

№	Обозначение	Наименование	Кол	Место укладки	Прим.
п/п					
1	КД.02.00.00.00-02	Подогреватель ПУ-500	1		
2	ТЭН-100В13/1,0Т220;Ф1	Трубчатый нагревательный элемент	1	Ящик ЗИП	
3	КД.08.00.00.00	Ключ специальный	1	Ящик ЗИП	
4	КД.01.01.00.06	Втулка уплотнительная	6	Ящик ЗИП	
5	КД.01.00.00.10	Винт регулировочный	4	Ящик ЗИП	
6	013-016-19	Кольцо по ГОСТ 9833-73	2	Ящик ЗИП	
	Техническая документация				
1	КД.02.00.00.00-02ПС	Паспорт	1	Пакет№1	
2		Паспорт и руководство по эксплуатации измерителярегулятора TPM-10	1	Пакет№1	
3		Паспорт термопреобразователя сопротивления 2ДТС 054-50M.B3.60/1	1	Пакет№1	
4		Паспорт ТЭН-100В13/1,0Т220;Ф1	1	Пакет№1	

5. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ.

Подогреватель представляет собой систему блоков, позволяющую подогревать углекислый газ с -20...-5 0 C до 0...+30 0 C и автоматически поддерживать температуру газа на выходе.

Панель управления расположена на лицевой стороне подогревателя. Патрубки подвода и отбора углекислого газа — сзади, на колонне подогрева.

5.1. КОЛОННА ПОДОГРЕВА.

- 5.1.1. Колонна подогрева состоит из корпуса (труба с фланцами на торцах), девяти ТЭНов и подводящего и отводящего патрубков.
- 5.1.2. Колонна и ТЭНы выполнены из нержавеющей стали.
- 5.1.3. Уплотнение ТЭНов производится с помощью уплотнительных втулок из фторопласта.
- 5.1.4. На колонне подогревателя установлен датчик температуры, с которого на блок управления поступает информация о температуре углекислого газа на выходе из него.
- 5.1.5. В нижней части колонны подогревателя имеется заглушка, предназначенная для периодического слива из нее водяного конденсата.
- 5.1.6. Концы ТЭНов, выходящие из колонны испарителя, закрыты колпаком и раздаточной коробкой.

5.2. БЛОК ЭЛЕКТРООБОРУДОВАНИЯ.

- 5.2.1. Автоматическую работу подогревателя обеспечивает блок электрооборудования расположенный на колонне подогрева.
- 5.2.2. Блок состоит из силового тиристорного электрооборудования и панели управления, на которой расположены приборы контроля и поддержания выходного параметра газа температуры.
- 5.2.3. Управление включения-выключения ТЭНами осуществляется прибором TPM10. Управление импульсное по пропорционально-интегрально-дифференциальному закону, что позволяет в процессе работы обеспечить высокую точность поддержания значения температуры газа на выходе из подогревателя.
- 5.2.4. Управление открытием-закрытием клапана осуществляется прибором ТРМ12.
- 5.2.5. Схема электрическая принципиальная приведена в Приложении 6.

6. УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ.

- 6.1. Эксплуатация подогревателя должна осуществляться в строгом соответствии с требованиями следующей документации:
 - «Правила эксплуатации сосудов, работающих под давлением»;
 - «Правила технической эксплуатации электроустановок потребителей»;
 - «Правила техники безопасности при эксплуатации установок потребителей»;
 - ГОСТ 8050-85 «Двуокись углерода газообразная и жидкая»;
 - Настоящего паспорта и тех. описания на комплектующие приборы и оборудование подогревателя;
- 6.2. К эксплуатации подогревателя допускаются лица не моложе 18 лет, прошедшие специальное обучение аттестацию, и имеющие удостоверение на право обслуживания подогревателя.
- 6.3. Источниками опасности при работе подогревателя является:
 - •углекислота, находящаяся в резервуаре изотермическом и колонне подогрева под давлением;
 - ■электрооборудование, находящееся под напряжением 380 В.
- 6.4. По степени воздействия на организм человека двуокиси углерода относится к $4^{\text{ому}}_{\text{му}}$ классу опасности по ГОСТ 12.1.007-76;
- 6.5. При резком снижении давления углекислоты, вследствие ее внезапного расширения при дренажировании, может образоваться твердая фаза «сухой лед», которая может привести к забивке арматуры и коммуникаций. Поэтому при обнаружении мест утечки углекислоты из коммуникаций необходимо принять незамедлительные меры по их ликвидации;
- 6.6. При эксплуатации подогревателя необходимо выполнять следующие требования:
 - •Не допускать работу подогревателя с неисправным электрооборудованием.
 - ■Не допускать обрыва или ослабления контакта заземляющего провода.
 - •Помещение углекислотной станции должно быть оборудовано приточновытяжной вентиляцией.

- •Все электромонтажные работы проводить при полностью снятом напряжении.
- •Ремонт и подтяжку резьбовых соединений производить только после полного сравнивания избыточного давления из коммуникаций.

7. ПОРЯДОК РАБОТЫ.

7.1. ПОДГОТОВКА ПОДОГРЕВАТЕЛЯ К РАБОТЕ

- 7.1.1. Установить подогреватель рядом с емкостью изотермической (не далее 10...15 метров).
- 7.1.2. Установить подогреватель в устойчивое положение с помощью регулировочных винтов (входят в комплект ЗИП), располагающихся на его основании.
- 7.1.3. Подсоединить подогреватель к емкости изотермической так, как показано в Приложении 5.
- 7.1.4. Входной и выходной трубопроводы подсоединять к соответствующим патрубкам с помощью фланцевого соединения (ответные фланцы в комплект поставки не входят). Условный диаметр монтажных трубопроводов Ду 25 (труба 32х3,5 ст.12Х18Н10Т или др.).
- 7.1.5. Входной трубопровод теплоизолировать. Например, теплоизоляционными трубами Thermaflex AS толщиной не менее 20 мм.
- 7.1.6. Надежно заземлить подогреватель проводом сечением не менее 6 мм². Подключить подогреватель к электросети и запитать клапан согласно схемы принципиальной электрической.

7. 2. НАСТРОЙКА ПОДОГРЕВАТЕЛЯ И ЕГО РАБОТА.

- 7.2.1. Изучить инструкцию по эксплуатации измерителя регулятора ТРМ 10.
- 7.2.2. Включить автоматический выключатель, расположенный на внутренней панели подогревателя. При этом на цифровом табло прибора ТРМ 10, должен кратковременно (3...8 сек) отобразиться код типа датчика и разрешение изменения параметров. Затем регулятор перейдёт в рабочий режим и на его табло отобразится действительное значение температуры.
- 7.2.3. Проверить настройку и при необходимости произвести корректировку рабочих параметров регулятора (см. Приложение 7). Рекомендуемые уставки температуры:

1. Уставка №1 (TPM 10) 20...30 ° С

Остальные настроечные параметры должны строго соответствовать значениям, указанным в Приложении 7 (за исключением коэффициентов ПИД-регулирования и параметров секретности, которые вводятся по усмотрению обслуживающего персонала).

- 7.2.4. В схеме работы подогревателя предусмотрена защита от включения ТЭНов при перегреве газа на выходе. Эту роль играет компаратор прибора ТРМ 10. Уставки компаратора должны быть: $C_1 = -50^{\circ}C$, $C_2 = +35^{\circ}C$. А тип его логики работы четвертый (т.е. U образная логика работы, согласно его руководства по эксплуатации). При этом ТЭНы не будут включаться при выходе значения температуры газа за пределы интервала $C_1...C_2$ (-50...+35).
- 7.2.5. Пустить во входной трубопровод углекислый газ (после резервуара изотермического, газификатора или другого источника холодного газа) и открыть кран на потребление.
- 7.2.6. Включить выключатель «Нагрев» на панели управления. Подогреватель запущен.
- 7.2.7. При понижении температуры в колонне подогревателя (в момент подхода "холодного" газа) блок управления начнет подавать сигналы на влючение-отключение ТЭНов, постепенно приближая значение температуры газа на выходе к значению уставки. Об импульсной работе ТЭНов можно судить по сигнальной лампе на панели управления.
- 7.2.8. В процессе постоянного по расходу потребления углекислого газа провести корректировку коэффициентов ПИД-регулирования в режиме самонастройки прибора ТРМ 10 (по необходимости).
- 7.2.9. Таким образом, подогреватель работает в автоматическом режиме, поддерживая постоянное значение температуры при прохождении через него до 500 кг углекислого газа в час.
- 7.2.10. Типовая схема оборудования станции газификации, в которую входит подогреватель ПУ-500, приведена в Приложении 8.

7.3. ОКОНЧАНИЕ РАБОТЫ.

7.3.1. ОКОНЧАНИЕ РАБОТЫ В РАБОЧЕМ РЕЖИМЕ (НА ПЕРИОД ОСТАНОВКИ НЕ БОЛЕЕ СУТОК).

- 7.3.1.1. Перевести тумблер "Вкл. подогревателя" в исходное положение (отключено) лампочка в тумблере должна погаснуть. Приборы контроля температуры на панели управления останутся в работе как *измерители* выходных параметров.
- 7.3.1.2. Закрыть вентиль на потребление (после регулятора давления на линию потребления углекислого газа).
- 7.3.1.3. Следить за значением температуры газа на выходе из подогревателя. При увеличении температуры, вследствие постепенного остывания ТЭНов, продуть подогреватель и магистрали трубопроводов, открыв на 3...5 минут дренажный вентиль за подогревателем до стабилизации значения температуры газа за ним (температура должна уйти в минусовую зону).
- 7.3.1.4. Подающий вентиль на резервуаре изотермическом оставить открытым, таким образом, система *Резервуар* + *Подогреватель* останутся сообщены и будут находиться под одним рабочим давлением до следующего цикла работы.

7.3.2. ОКОНЧАНИЕ РАБОТЫ ПЕРЕД ДОЛГОСРОЧНЫМ ПЕРЕРЫВОМ В РАБОТЕ.

- 7.3.2.1. Выполнить действия по п.п. 7.3.1.1....7.3.1.3.
- 7.3.2.2. Выключить автоматический выключатель подогревателя.
- 7.3.2.3. Закрыть вентиль «Газ» на резервуаре изотермическом.
- 7.3.2.4. Стравить остаток углекислоты из магистралей трубопроводов и подогревателя при помощи дренажного вентиля.

8. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ.

8.1. ОБЩИЕ УКАЗАНИЯ.

- 8.1.1 Работы по техническому обслуживанию подогревателя производятся обслуживающим персоналом под руководством и контролем лица, ответственного за его эксплуатацию. Работы по ремонту и техническому обслуживанию электрооборудования должны выполняться в специальных ремонтных мастерских.
- 8.1.2. Результаты ремонта и технического обслуживания должны в обязательном порядке заноситься в журнал подогревателя.
- 8.1.3. Техническое обслуживание заключается в систематическом наблюдении и контроле за техническим состоянием оборудования подогревателя, и включает регулярный осмотр и устранение обнаруженных неисправностей.
- 8.1.4. При проведении работ по техническому обслуживанию необходимо отключить подогреватель от источника электрического питания.
- 8.1.5. При необходимости выполнение работ по устранению негерметичности коммуникаций и их разборке отключите подогреватель от источника «холодного» газа и стравите избыточное давление открытием дренажного вентиля.

8.2. ПЕРИОДИЧНОСТЬ И ПОРЯДОК ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ.

- 8.2.1. Техническое обслуживание при эксплуатации подогревателя подразделяется на:
 - Ежедневное обслуживание;
 - Обслуживание №1 через каждый месяц работы подогревателя.
- 8.2.2. Ежедневное обслуживание включает в себя:
 - Внешний осмотр подогревателя. В случае загрязнений подогревателя очистить его ветошью от пыли, масла и прочих загрязнений;

- Проверку визуально и на слух герметичности резьбовых и др. соединений. В случаем нарушения герметичности стравить углекислоту из магистралей и устранить ее;
- Проверку настройки уставок прибора ТРМ 10;
- Периодическое слежение за параметрами работы подогревателя. Если они резко изменились, найти причину их изменений и устранить ее.

8.2.3. Обслуживание № 1 включает в себя:

- Слив конденсата воды из колонны подогрева через дренажную заглушку в его нижней части (производить после стравливания избыточного давления);
- Продувку подогревателя углекислым газом давлением до 10 кгс/см² в течение 5 мин.

8.3. ПОРЯДОК ЗАМЕНЫ ТЭНОВ ПОДОГРЕВАТЕЛЯ.

- 8.3.1. Отсоединить эл. разъемы от задней части блока управления.
- 8.3.2. Снять с колонны подогрева блок управления.
- 8.3.3. Снять с колонны подогрева верхний защитный колпак.
- 8.3.4. Снять колонну подогрева с основания.
- 8.3.5. Снять с колонны подогрева нижний защитный колпак.
- 8.3.6. Снять с наконечников ТЭНов шины и эл. проводку.
- 8.3.7. Определить вышедший из строя ТЭН.
- 8.3.8. Снять его нажимные гайки (с помощью специального ключа из комплекта ЗИП) и вынуть неисправный ТЭН из колонны подогрева.
- 8.3.9. Вынуть из посадочных мест ТЭНа втулки уплотнительные.
- 8.3.10. Очистить посадочные места от герметика.
- 8.3.11. Вставить в крышку испарителя новый ТЭН и новые уплотнительные втулки. <u>Примечание:</u> перед их установкой промазать торцевые поверхности втулок силиконовым герметиком, интервал рабочих температур которого должен быть -50...+250 °C.
- 8.3.12. Зажать уплотнители ТЭНа с помощью нажимных гаек.
- 8.3.13. Проверить герметичность уплотнения ТЭНа пневматически, давлением П=Рраб, т.е. 25 кгс/см². При обнаружении негерметичности стравить давление из колонны подогрева и устранить ее, поджав нажимные гайки на 1...2 оборота.
- 8.3.14. Установить на колонну подогрева шины и электропроводку ТЭНов, нижний и верхний защитные колпаки.
- 8.3.15. Установить колонну подогрева на основание и закрепить ее болтами.
- 8.3.16. Установить на колонну подогрева блок управления и присоединить эл. разъемы к задней части блока управления.
- 8.3.17. Подогреватель готов к работе.

9. ХАРАКТЕРНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ.

№	Наименование	Вероятная причина	Метод устранения
п/п	неисправностей		
1.	Негерметичность соединений	1. Ослабление соединений	Подтянуть гайку
	трубопроводов	трубопроводов.	трубопроводов или
		2. Порыв прокладок.	заменить прокладку.
2.	Сообщение «» на табло	1. Обрыв датчика	Проверить правильность
	TPM 10, 12	2. Короткое замыкание	подключения датчика, его
		линии или датчика	исправность и качество
			соединений
3.	Снижение производительности	Вышли из строя один или	Заменить неисправные
	подогревателя	несколько ТЭНов	ТЭНы
4.	Не загорается световой сигнал	Перегорела лампа	Заменить лампу.
	"Нагрев"		

10 СВИДЕТЕЛЬСТВО О ПРИЁМКЕ.

Подогреватель ПУ-500 заводской условиям КД ТУ00.00.00.00 и признан Дата выпуска «»	200года
Начальник ОТК	Вишневский П.А.
Инженер – испытатель	Дмитриев В.М.
М.П.	
11. СВИДЕТЕЛЬСТ	ГВО ОБ УПАКОВКЕ.
-	упакован на предприятии ООО мотренным ГОСТ 9.014-78 и техническим
Дата упаковки «»	200_ г.
Упаковку произвёл	Гамов А.Н.

12. СВИДЕТЕЛЬСТВО О КОНСЕРВАЦИИ.

Подогреватель ПУ-500 заводской №	подвергнут на	предприятии
ОО «КАДИ» консервации согласно требованиям, пред	усмотренными	ΓΟCT 9.014
– 78 и техническим условиям КД ТУ 00.00.00.00.		
Дата консервации «»	200_ г.	
Консервацию произвёл	Гамов А.Н.	

13. ГАРАНТИИНЫЕ ОБЯЗАТЕЛЬСТВА.

Срок гарантии на подогреватель составляет 12 месяцев с момента приёмки его представителем заказчика.

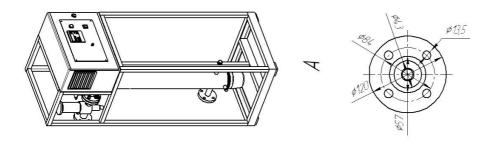
Гарантийные обязательства теряют силу:

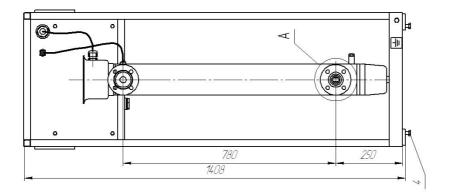
- 1. При внесении потребителем изменений в схему монтажа или конструкцию подогревателя, а также при нарушении правил эксплуатации и требований данного паспорта.
- 2. При выполнении пуско-наладочных работ и дальнейшей эксплуатации людьми не прошедшими специального обучения и не имеющими свидетельства о допуске к работе на этом оборудовании.

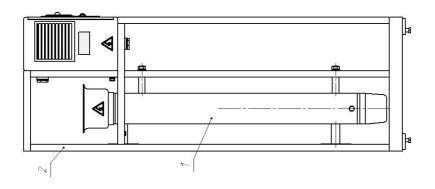
СВЕДЕНИЯ ОБ УГЛЕКИСЛОТЕ

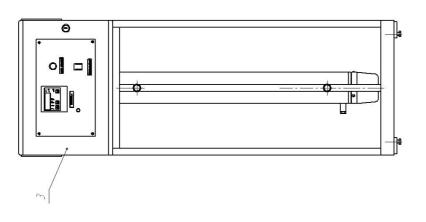
Углекислота $C0_2$ при температуре 293^0 K (20^0 C) и нормальном атмосферном давлении представляет собой бесцветный газ, имеющий кисловатый вкус и слабый запах, вызывающий ощущение небольшого покалывания в слизистой оболочке носа.

Один кубометр углекислого газа при температуре 273^{0} К. (0^{0} С) и давлении 760 мм ртутного столба весит 1,977 кг (удельный вес), т.е. в этих условиях он в 1,524 раза тяжелее воздуха. Удельный вес углекислого газа в значительной степени зависит от давления и температуры.

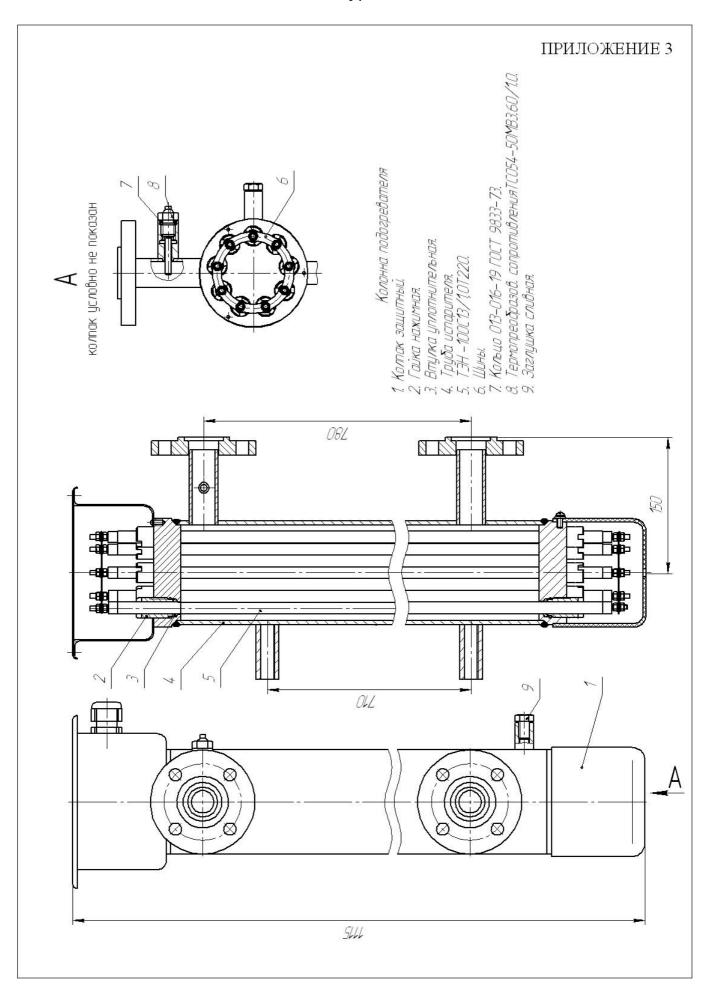

Двуокись углерода с предприятия-изготовителя к потребителям может поставляться либо в изотермических резервуарах, либо в баллонах высокого давления. В изотермическом резервуаре углекислота находится в двухфазном газожидкостном состоянии при температуре, значительно ниже температуры окружающего воздуха. Относительная стабильность температуры углекислоты в изотермическом резервуаре обеспечивается теплоизоляцией.

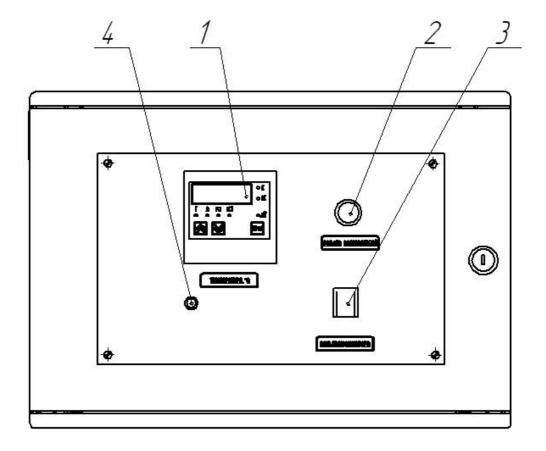

В баллонах высокого давления углекислота имеет температуру, равную температуре окружающего воздуха. Если температура углекислоты в баллоне выше 304^{0} K (+31 °C), то вся углекислота в баллоне будет находиться в газообразном состоянии. При температуре углекислоты ниже 304^{0} K(+31 0 C) последняя может находиться в баллоне в двухфазном состоянии (газжидкость), при этом количество жидкой фазы в баллоне зависит от температуры и массы углекислоты.


Давление углекислоты в баллонах изменяется при изменении температуры. Для того чтобы давление в баллоне при возможных в практических условиях температурах не превышало допустимой для данного баллона величины, он заполняется углекислотой с определенным коэффициентом наполнения. Под коэффициентом наполнения понимается отношение весового заряда углекислоты в кг к емкости баллона в л. Как сказано выше, в зависимости от температуры и массы углекислоты в баллоне (коэффициента наполнения), углекислота может находиться частично в сжиженном и частично в газообразном состоянии или только в газообразном состоянии. Поэтому, если открыть вентиль баллона, в котором имеется жидкая фаза, держа баллон вентилем вверх, то из баллона будет выделяться газ. Если баллон держать вентилем вниз или вставить в него сифонную трубку, то из баллона будет выделяться сжиженная углекислота под давлением ее собственных паров. При этом вследствие дросселирования углекислота охлаждается и может насильно выбрасываться в виде хлопьев снега в твердом состоянии.


Отрицательным свойством углекислого газа является то, что он в больших концентрациях вызывает удушье с потерей сознания, а непосредственное воздействие сжиженного газа на кожу человека приводит к обмораживанию. Быстрое наступление смерти от удушья происходит при 30%-ном содержании углекислого газа в смеси с воздухом. Очень серьезные последствия могут быть при вдыхании в течение от 0,5 до 1 часа воздуха, содержащего примесь углекислого газа с концентрацией от 6 до 8%. Вдыхание в течение от 0,5 до 1 часа воздушно-углекислотной смеси с концентрацией углекислоты от 4 до 6% не вызывает серьезных последствий.

Промышленностью выпускается газообразная и жидкая двуокись (диоксид углерода, углекислый газ) по ГОСТ 8050-85 высшего, 1-го и 2-го сортов. Содержание воды в баллоне с двуокисью углерода не должно превышать 0,04% от массы заряда для высшего и 1-го сортов и 0,1% для 2-го сорта.





Падагреватель углекислотный ПУ–500. Общий вид. !Колонна испарителя. 2. рама. 3. Блок электрооборудования. 4. Регулировачные винты.

Пульт управления

- 1. Измеритель-регулятор ТРМ10 2. Лампа сигнальная "Работа нагревателей". 3. Выключатель "Вкл. подогревателя". 4. Предохранитель плавкий.

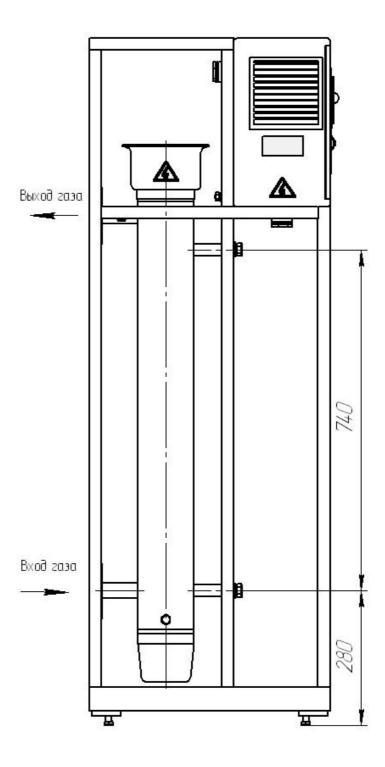


Схема подключения подогревателя ПУ500

Заводские уставки рабочих параметров прибора ТРМ10.

Параметр	Заводская установка	Комментарии			
Вход из рабочего режима по кратковременному нажатию ПРОГ.					
1. Температура регулирования		°C			
2. Интегральная постоянная для		_			
ПИД-регулятора		Возможна установка в			
3. Дифференциальная постоянная		процессе работы при самонастройке прибора.			
для ПИД-регулятора		Код доступа в режим			
4. Полоса пропорциональности		самонастройки 8206			
для ПИД-регулятора		1			
5. Первая уставка компаратора	-50	-50 °C			
6. Вторая уставка компаратора	40	+40 °C			
Вход по коду 0107					
7.Тип датчика	09	TCM 50M W ₁₀₀ =1,428			
8. Блокировка изменений	11	Разрешено изменять			
параметров регулирования		все параметры			
(параметр секретности)					
9. Коррекция измерения «сдвиг	0.000	Коррекции нет			
характеристики»					
10.Тип логики устройства	4	U-образная			
сравнения					
11.Период следования выходных	1	1 сек.			
импульсов ПИД-регулятора					
Вход по коду 0108					
12.Полоса нечувствительности	00				
ПИД-регулятора					
13. Ограничение максимальной	100				
выходной мощности					
14. Тип исполнительного	0	Нагреватель			
устройства ПИД-регулятора					
15.Тип выходного сигнала ПИД-	1	Исполнительное			
регулятора		устройство –			
16 Fuyayya yudaanana duuraa	Λ	твердотельное реле			
16. Глубина цифрового фильтра	0	Фильтр выключен			

Карта учета технического обслуживания и ремонта.

карта учета технического обслуживания и ремонта.				
Дата	Вид технического обслуживания	Замечания о техническом состоянии подогревателя	Должность, фамилия и подпись ответственного лица	
1	2	3	4	
1		3		

Опросный лист.

В целях дальнейшего совершенствования изделия просим дать свои замечания и предложения. После заполнения настоящий опросный лист просим направить по

	Вопрос	Ответ
1.	Марка изделия, его номер, год выпуска.	
2.	Условия работы.	
3.	Дата начала эксплуатации изделия.	
4.	Удобство обслуживания изделия.	
5.	Наиболее часто встречающиеся неисправности.	
6.	Какими дополнительными запасными деталями и инструментом желательно комплектовать изделие.	
7.	Ваши предложения и пожелания.	
8.	Адрес потребителя.	
9.	Фамилия, должность, подпись, число.	